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1 Introduction

One of the key questions in linguistics is how language is acquired, both

by children and by adults. Language acquisition is often investigated by

means of behavioral research methods. The aim of the present chapter is to

provide an overview of the most important methodological issues involved

in designing empirical linguistic studies, and in analyzing data from such

studies.

Solid research methods are not only required for good, and publishable

scientific studies, but also for good ethics. This is because the effort for the

human participants in terms of time, inconvenience, or loss of privacy should

be outweighted by the expected scientific results (Rosnow & Rosenthal, 2001,

Ch.3). Hence, if a study is unlikely to allow valid conclusions, then it would

in general be ethically wrong to waste subjects’ time, energy, and privacy,
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and to expose them to unforeseen risks for this non-purpose.

More practically, researchers in many countries need to comply with le-

gal regulations when human subjects are involved. In the U.S.A. this is

enforced by a local Internal Review Board or Human Subjects Commit-

tee. The U.S. regulations simply state that the proposed study must “[use]

procedures which are consistent with sound research design...” (Office of

Human Research Protections, 2005, §46.111; emphasis added). The Dutch

code of conduct for researchers requires them to exercise scrupulousness

(“zorgvuldigheid”) and requires that the benefits of the research should jus-

tify the risks for human (and animal) subjects (VSNU, 2004). Similar guide-

lines apply in other countries, and to all research funded through the E.U.

(CORDIS, 2008). In general, such justification is possible only if the research

is methodologically solid and adequate.

Methodological considerations are even more important if the subjects

are children, in particular non-typically-developing children (see Chapters

11 and 12). Relative to adult participants in language research, children

are more difficult to recruit, they are more vulnerable (hence the parents’

informed consent is always required), they can perform a smaller range of

tasks, and their attention and memory spans are shorter. Hence, special

care is needed in designing a study, in recruiting and testing and protecting

participants (see Editors’ Introduction), and in analyzing their behavioral

data. Consequently, it should go without saying that researchers should

work out the study’s design and data analysis in detail, before recruiting

participants and collecting data.
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2 Testing hypotheses

In empirical research, insights are primarily based on verifiable and objec-

tive observations, combined with logic, and not based on authority, common

sense, or introspection (cf. Maxwell & Delaney, 2004; Rosnow & Rosenthal,

2001). Observations should also be consistent and reproducible, in order to

obtain general insights from the limited sample of observations.

But how can such objective and reproducible observations lead to scien-

tific insights? Let’s consider the claim that all flames are hot. Does this claim

gain empirical strength by finding positive evidence, i.e. by observing flames

that are indeed hot? In fact, it does not, because of the so-called induction

problem, already described by Hume (1739-1740, I.III.VI). Briefly, this prob-

lem entails that it is not logically safe to generalize from the observed cases

to a general statement. Such generalizations always require a leap of faith

from the observed instances to the general cause or principle. However, it

is logically safe to refute the above claim by observing just one flame that

is not hot, as was argued by Popper (1959/2002). Thus, falsification of the

original claim has led to the insight that that claim was not correct, and we

have gained a logically solid insight (that it is not true that all flames are

hot).

Following this logic of falsification, a researcher typically studies two hy-

potheses. One hypothesis is related to the original research idea, e.g. the

idea that the receptive vocabularies of 5-year-old children are larger than

those of 3-year-old children. This is called the alternative hypothesis, or H1.

Positive evidence in favor of this H1 is however not convincing, because of

the induction problem mentioned above. (The positive evidence could come

from biased selection of participants, or biased measurements, etc.) It would

be more convincing if the researcher were to attempt to prove the logical
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opposite of H1; this opposite is often called the null hypothesis, or H0. Here

H0 would claim that the 5-year-olds’ vocabularies are not larger than those

of the 3-year-old children. If the observations are very unlikely given the null

hypothesis, then the researcher may reject the null hypothesis, and we may

logically conclude that the alternative hypothesis or research idea is indeed

correct.

Notice that if the observations are indeed likely, i.e. not unlikely, given the

null hypothesis, then the researcher will not reject the null hypothesis. This

does not imply that the null hypothesis is true, because “absence of evidence

is not evidence of absence” (Sagan, 1996, p.221). A null result only implies

that H0 cannot be rejected convincingly. Hence there is an asymmetry: the

null hypothesis is accepted by default, and only rejected by strong empirical

evidence against it. In the present example, the older children’s vocabularies

may indeed be larger in reality than those of the younger children, but we

may fail to observe this true difference in our sample, for a multitude of

reasons. The null hypothesis would then not be rejected, even though it is

in fact false (this is called a Type II error; see below for further discussion).

3 Types of studies

Empirical research attempts to find relations between variables. In the above

L1 example, the main hypothesis claims that the variables children’s age and

vocabulary size are related. In second language acquisition, a researcher

might hypothesize that learner proficiency is related to level of motivation.

In a true experiment, the independent variable (also called explanatory vari-

able) is manipulated by the experimenter, yielding different experimental

conditions. Participants are randomly selected from the population(s) of
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interest, and randomly assigned to these experimental conditions, in which

their response values of the dependent variable are then observed. Hence,

the observations of the dependent variable depend on the experimental con-

ditions defined by the independent variable.

Many explanatory variables, however, cannot be manipulated at will by

the investigator, because they constitute inherent properties of the individual

participants. Examples are the participant’s age, native language, clinical

status, etc. For this reason, most language acquisition researchers use a

quasi-experimental design, in which participants are not randomly assigned

to experimental conditions. Such a quasi-experiment can succesfully establish

relations between such independent variables and the dependent variable,

although it may not be clear what is the cause and what the effect. For

example, let us consider a fictitious observational study on the acquisition of

a second language (henceforth L2), which shows that acquirers who have a

higher motivation to learn the L2 also produce fewer errors in the L2. Does

higher motivation cause higher proficiency, or is it the other way round? Or

are both motivation and proficiency related to an unknown third variable,

e.g. the amount of use of the L2?

In the latter example, the amount of use of the L2 may have been a con-

founding variable: a variable that is extraneous to the study, and not directly

under investigation, but that is nevertheless related to both the independent

and dependent variables. For example, amount of use may be related to pro-

ficiency because the more a learner uses a language, the more likely he is to

become more proficient; amount of use could also be related to motivation

because a more highly motivated learner may seek out more opportunities

to use L2. More generally, a quasi-experimental study cannot entirely prove

that the independent variable causes the observed effect in the dependent
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variable. The direction of causality may be reversed, or as noted above the

observed effect may be caused by other, confounding variables, which are

not properly controlled because participants are not randomly assigned to

conditions. Any conclusions about the causality of the observed relationship

should therefore be drawn with caution, and only after considering possi-

ble confounding variables. If we need to be absolutely certain in identifying

cause and effect, then a true experiment is required.

In the most basic experimental design, there is only one independent

variable (usually categorical), and one dependent variable. The researcher

samples groups of participants out of the population (e.g. two groups of chil-

dren, of ages 3 and 5). The factor of interest, e.g. age, then varies “between

subjects” or between groups of subjects. Such a cross-sectional design with

different age groups may be used, for example, to assess whether 5-year-old

and 7-year-old children process language differently (see Chapter 7). This

design has the advantage that there is no transfer (e.g. learning) among con-

ditions. The disadvantage however is that any accidental differences among

the groups may be confounded with the main factor. Some confounding

variables may be minimized by increasing the number of participants, with

random sampling of participants from the population of interest. But other

contextual confounds may be difficult to neutralize. In the above example,

the 7-year-olds have lived through a longer and different history than the

5-year-olds, the older children are more developed, and they have a larger

working memory and larger vocabulary than the younger children. All these

differences may affect their performance. Similarly, when it comes to L2 ac-

quisition, two groups differing in their native languages probably also differ

in other relevant properties. Chapters 10 and 11 discuss how to minimize

possible confounds in between-subject comparisons.

6



An alternative design is to vary a factor “within subjects”, observing the

same participant under multiple conditions, yielding “repeated measures”

for each participant. This allows the researcher to disentangle the variation

among participants from the effects of the main factor, yielding higher sta-

tistical power (see below). Consequently, fewer participants are needed in

a within-subject study than in a between-subject study with equal power

(Maxwell & Delaney, 2004, p.562). As a relevant example involving age, a

linguistic researcher could draw a single sample of 5-year-olds, observe the

participants’ behavior, then wait 2 years, and observe the same participants

again at age 7. In this so-called “longitudinal” design, participants may have

transferred experiences from previous to subsequent observations. For exam-

ple, they may have learned how to perform in language tests. They may also

dropped out of the study in a non-random fashion (e.g. because of fast or

slow rate of development). Hence the main factor may be confounded with

other developmental and external variables. Longitudinal designs are used

to investigate language acquisition, e.g. in diary studies, but they require

considerable time and effort from the researcher and the participants (see

Chapter 1).

4 Validity

Any scientific study aims to obtain valid insights from empirical observa-

tions. Valid conclusions are only justified, however, if the study was properly

designed, conducted and analyzed. The term validity refers to how correct or

accurate the conclusions of a scientific study are (Maxwell & Delaney, 2004).

As we saw above, this validity is threatened by nuisance variables and

confounds, which may provide plausible alternative explanations for an ob-
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served effect. Experimental designs may be ranked by their susceptibility

to such threats of validity. At one end we find a particularly strong design

(randomized true experiments, typically used in medical and pharmaceuti-

cal research), intermediate positions are taken by other designs (e.g. quasi-

experiments), and at the other end we find designs which are very weak when

it comes to validity (e.g. uncontrolled case studies, which may nevertheless

provide useful insights).

Validity may be threatened by contextual factors already mentioned, in-

cluding maturation of participants, and artefacts introduced by our measur-

ing instruments such as verbal or cognitive tests (e.g. Rosenthal & Rosnow,

2008, p.211). These possible confounds may be controlled in longitudinal

research by including a control group for comparison. Methods to control

confounding variables are discussed in Chapters 2 (for adult participants),

10 (for children and adults) and 11 (for language impaired children).

In addition, validity in acquisition research may be threatened by selec-

tion bias, in particular volunteer bias (Rosenthal & Rosnow, 1969). It is

quite plausible that people who are relatively more likely to volunteer them-

selves (or their children) for language research, also have better than average

linguistic and verbal skills. This is obvious in many diary studies, and in

the Childes database (MacWhinney, 2000), where the proportion of children

with highly educated parents is far larger than in the general population.

The children of highly educated parents may well have had more intense and

more focused language exposure (perhaps combined with an inherited verbal

giftedness) than other children. As a result, the diaries and databases are

not necessarily representative of the language populations they attempt to

represent. Hence caution is required in generalizing findings from such biased

samples to a wider population of language acquirers.
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5 Significance, power and effect size

Let us return now to the logic of testing hypotheses by means of empirical

data, temporarily ignoring the experimental design, and focusing on the data

analysis. As explained above, the null hypothesis to be tested often states

that the true effect (or difference) in the population is absent. If this H0 is

true, then the observed effect in the sample is likely to be very small as well —

but due to sampling variation, a larger effect may be observed occasionally.

Statistical analysis tells us how likely it is to find the observed effect, or a

more extreme one, if H0 is true.

If the probability (abbreviated as p) of the observed effect is very low given

H0, then this may be regarded as convincing or “significant” evidence against

that H0. The basic argument is as follows: an effect has been observed; if

H0 is true then this effect is very unlikely; therefore H0 is rejected and the

alternative H1 is accepted. The level of significance, or probability p under

H0, is also the risk of rejecting H0 incorrectly, i.e., of finding an effect even

if H0 is true (a false positive). This incorrect rejection of H0 is called a

Type I error. The cut-off value for p, i.e. the highest acceptable risk of

incorrectly rejecting H0, is called α; an often-used cut-off value is α = .05.

In sum, significance refers to the probability of observing this effect (or a

larger effect) given H0, and not to the probability of H0 given the observed

effect (Cohen, 1990, 1997).

The risk of committing a Type I error (of regarding a null effect as signif-

icant) should be balanced against the opposite error of Type II, of failure to

regard a non-null effect as significant (a miss, or false negative). This error

occurs if we fail to reject H0 even though H0 is in fact false. The risk of this

Type II error is indicated by β. If H0 is indeed false, then the complement of

this risk, or 1−β, constitutes what is called the statistical power of the study.
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The power is the probability of rejecting H0 if H0 is indeed false. Informally

speaking, this is the chance of corroborating your H1 if H1 is indeed true,

or the chance of you getting it right if you are right (a hit, or true positive).

Hence the risk of a Type I error (α) should be balanced against the risk

of a Type II error (β). Many studies are conducted with maximum error

probabilities of α = .05 and β = .20 (power .80). Hence in these studies a

Type I error is — admittedly somewhat arbitrarily — regarded as four times

as costly than a Type II error. If we regard both errors as more equally

serious, however, then we might better use a higher α, and/or lower β, or

both (Rosenthal & Rosnow, 2008, Ch.12).

More important than the binary decision regarding H0 is the size of the

hypothesized effect. Even a very small effect may be statistically significant

if the size of study or number of observations is very large; this is succinctly

summarized as “significance test = size of effect × size of study” (Rosenthal

& Rosnow, 2008). For example, the small difference in vocabulary size be-

tween children aged 5;0 and 5;1 will be statistically significant if we include

hundreds of participants in each age group. But we do not want to spend

large research funds, and waste many participants’ time and effort, only to

report vanishingly small and irrelevant effects as significant. This means that

we should think about the smallest effect that we consider relevant and that

we wish to detect in our study (see below for further discussion). Moreover,

we should habitually report not only the significance level, but also the size

of the observed effect. This is part of the research guidelines implemented

by some scientific journals, e.g. Language Learning and TESOL Quarterly.

In our example study on vocabulary size by children of ages 3 and 5 (§2),

differences smaller than 2 scoring units might be regarded as irrelevant; the

smallest relevant difference is 2 units. The study should be designed such
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that the statistical power is at least .8 (or β ≤ .2) for detecting a vocabulary

size difference of 2 units or larger.

Multiple observations yield different outcomes (otherwise research would

be quite boring). The amount of dispersion among observations is called the

standard deviation (symbol s). This dispersion may be due in part to random

fluctuations, to irrelevant individual differences among participants, and to

measurement errors. The effect we are investigating is hidden, as it were,

in this random dispersion among observations. As you can imagine, detect-

ing a small effect in a set of observations is easier if the random dispersion

among observations is relatively low. Hence the effect under investigation

is expressed relative to the standard deviation. The resulting relative effect

size (symbol d, effect divided by dispersion) thus indicates the contrast or

relative conspicuousness of the hypothesized effect against the random vari-

ability among observations (Cohen, 1988). If the hypothesized effect yields

a difference of 2 scoring units, and the dispersion s among observations is 4

scoring units, then the relative effect size d is 2/4 or 0.5. If the hypothesized

difference is only 1 scoring unit, and the dispersion is 2 scoring units, then

the relative effect size is 1/2 or 0.5 also. By contrast, if the hypothesized

difference is 4 scoring units, but the dispersion is as large as 20 scoring units,

then the relative effect size is only 4/20 or 0.2. If the random dispersion or

variability among observations is smaller, then an effect is more likely to be

detected; in other words, statistical power increases. Hence, it is worthwile

for researchers to think about methods to reduce random variability. The

relations between significance, power, sample size, standard deviation, and

effect size (Cohen, 1988; Lipsey, 1990; Rosenthal, Rosnow, & Rubin, 2000;

Rosenthal & Rosnow, 2008) will be further illustrated below.

Why should researchers worry about power? The first reason is of course
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Type II error itself, which may have immediate and possibly serious con-

sequences. But there are methodological and practical considerations, too.

Let us consider the example of a study in which one group of participants

(e.g. bilinguals) is hypothesized to perform better than the other group (e.g.

monolinguals), on some dependent variable reflecting linguistic performance

(see Bialystok, 2001). Let us also assume that H0 is indeed false, so the

two types of speakers indeed perform differently; this should yield a signifi-

cant group effect on linguistic performance. If several replicated low-power

studies are taken together, then a significant effect may be found in some

studies, but not in others, due to the low power in each study. Subsequently,

researchers typically attempt to explain these different outcomes in a series

of follow-up studies.

Researchers should realize, however, that a mix of significant and non-

significant findings may well be due to the low power in each study, and not

necessarily to other differences in the studies, e.g. differences in stimulus

materials, testing procedure, properties of the participants, etc. Focusing

on these differences between low-power studies may easily lead “to wasted

research efforts to identify nonexistent moderator variables” (Schmidt, 1996,

p.118).

Moreover, the scientific record of published studies will contain a confus-

ing mix of significant and non-significant findings. Many professionals rely

on this scientific record for their work, e.g. for developing diagnostic tools

and evidence-based treatment programs in education and in health care, or

for further scientific research. The mixed outcomes of the multiple stud-

ies will prevent these professional consumers from concluding that the two

groups of participants (in the current example) do indeed perform differ-

ently (Van Kolfschooten, 1993, p.92). This may seriously hamper progress
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in diagnosis, treatment, and research.

6 Frequently asked questions

Following the basics of experimental design and hypothesis testing, this sec-

tion addresses some frequently asked questions about these topics when it

comes to conducting research into language acquisition. It attempts to ex-

plain why various properties of your study are important in the answers to

these questions. We start with the most frequently asked question.

6.1 How many participants and items are required?

In order to answer this question, we need to take other properties of the study

into account. The minimum number of participants (and items) depends on

the chosen level of significance (α), on the desired power (1 − β), and on

the expected relative effect size (d, expected difference divided by expected

standard deviation). These concepts were introduced in §5 above.

In order to illustrate the complex relations among these key properties

of a study, let us regard a fictitious head-turn preference study. A sample of

infants is compared on their listening time (in seconds), under two conditions

using a within-subject design (after the Modified Head-Turn Preference pro-

cedure as used by Jusczyk & Aslin, 1995; see also Chapter 4, section 3, of

this volume). In one condition the participants listened to target words after

a preceding period of familiarization, and in the other condition they listened

to other targets without such a period of familiarization. The research hy-

pothesis H1 states that there is an effect of familiarization, i.e., a difference

among the two conditions. Because shorter listening times are expected af-

ter familiarization, the expected effect is negative, i.e., a decrease in listening
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time due to familiarization. The corresponding null hypothesis states that

this effect of familiarization is absent, or nil. We assume conventional criteria

of α = .05 for a Type I error, and β = .20 for a Type II error (power .80). We

also assume that the smallest difference of interest is 1 second (this is the dif-

ference in listening time between experimental conditions). With dispersion

assumed to be s = 2 seconds, this amounts to an expected relative effect size

of d = 1/2. Stated differently, we want to have at least 80% chance (power

.80) of detecting an effect of size 1/2 (difference of 1 divided by variability

of 2 seconds), and we also want to have at most 5% chance of erroneously

reporting an effect that is in fact nil. As you might imagine, the researcher’s

task of discriminating a relevant effect from irrelevant variability becomes

easier as more participants (and items) are included in the study. But how

many are sufficient?

In this example, if we still assume a within-subject design, then a conser-

vative estimate for the minimum number of participants is n = (2.8/d)2,

rounded up to 32 participants (Winer, 1971; Cohen, 1988; Lenth, 2006;

Gelman & Hill, 2007). If we would assume a between-subject design, and

all other properties unchanged, then at least n = (5.6/d)2, rounded up to

126 participants would be required (Gelman & Hill, 2007, Ch.20), because

between-subjects designs are less efficient and require more participants to

obtain the same power. In either design, the number of required participants

is larger as the relative effect size is smaller. If the expected relative effect

size is halved to d = 1/4, then n = 126 participants are required in a within-

subject design, and n = 502 participants are required in a between-subject

design. Obviously, detecting a relatively small effect requires relatively many

participants and items, and vice versa. (The fixed values of 2.8 in the first

and 5.6 in the second formula above capture the combined values of α and
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β, taking design properties into account, Gelman & Hill, 2007).

Thus, in order to determine the number of participants (and items), the

researcher needs to know the essential statistical properties of the study.

First, a rough estimate is required of the expected difference due to experi-

mental groups or conditions. Second, an estimate of the standard deviation

is required; this is often derived from previous studies. If no previous studies

are available, the standard deviation may be estimated from a dozen or so

pilot observations: take the highest and lowest observation, compute their

difference (called the range), and divide the range by 4, yielding a rough

estimate of the standard deviation (Peck & Devore, 2008, p.399). Third and

fourth, appropriate risk levels for Type I and Type II errors must also be

determined, as explained above. Finally, the experimental design needs to

be chosen. After all these essential properties of the study are determined,

the researcher may use formulae (e.g. Gelman & Hill, 2007) or dedicated

software (e.g. Lenth, 2006) to compute the required minimum number of ob-

servations. It is better to include a few more participants than this required

minimum.

6.2 What if only a small number of participants are

available?

In many situations, recruiting many participants (or constructing many test

items) is not possible, and researchers will have to compromise in sample

sizes. As explained above, this reduces the power or sensitivity of the study.

A non-significant outcome, hence failure to reject H0, could either be due

to H0 being true, or it could be due to a Type II error. This implies that

no conclusions should be based on a null result, if the observed power in

detecting a relevant effect was low, as discussed in section 2 above. Caution
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is required even ifH0 was rejected (i.e., a significant outcome), because results

from a small sample may not generalize to the population. A smaller sample

also has a smaller chance of being representative of the population from which

it was drawn.

We saw in the preceding section that the required number of participants

depends in part on the relative effect size d (relevant difference divided by

irrelevant variability). So, one could compensate for the smaller sample size

by sacrificing sensitivity, i.e., by sacrificing the power to detect small effects.

A larger relevant difference, and unchanged variability, will yield a larger

relative effect size d. One could also attempt to reduce the random variability,

as will be discussed in the following section. In the fictitious head-turn

preference study discussed above, for example, power could be maintained at

about .75 with only n = 9 participants, if the smallest detectable difference

in listening time is increased from 1 to 2 seconds, meaning that the smallest

detectable relative effect size d is increased from 1/2 to 2/2 = 1.

With this few participants, however, only large effects can be detected

reliably, and medium-sized effects are most likely to go undetected, even

though it might be such a medium-sized effect in which the researcher is

interested. If the effect is medium-sized (e.g. d = 1/2), and if only 9 par-

ticipants are available, then the observed power would be as low as .26, far

below the desired level of .80.

Thus, if the required number of observations (participants and/or test

items) cannot be obtained in a study, then a researcher should accept that

only large effects can be assessed, and that small effects cannot be assessed.

In addition, failure to find a significant effect (i.e., failure to reject H0) does

not imply that the hypothesized effect is nil (see section 2). It is therefore

informative to report and discuss the relative effect size, as discussed above.
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6.3 How can I increase the sensitivity of my study?

As explained above, the sensitivity of testing hypotheses can be maintained to

some extent by increasing the relative effect size, if the number of participants

and/or items is low. In addition to raising the bar for a relevant difference, a

researcher might attempt to reduce the random variability among the obser-

vations. An unchanged relevant difference, and lower variability, will yield a

larger relative effect size d. In the head-turn preference example discussed

above, power could be maintained at about .75 with only n = 9 participants,

and with a minimum effect of 1 second difference in listening time, if the

random variability or standard deviation is decreased to s = 1 second. This

increases the smallest detectable relative effect size d from 1/2 to 1/1 = 1.

So how can researchers reduce the standard deviation in their obser-

vations? While designing, conducting and analyzing a study, all possible

sources of variation, except for the variance due to the construct under in-

vestigation, must be eliminated as much as possible.

One important type of variation is that between individual participants,

as extensively discussed in the three chapters of this volume that deal with

comparisons across groups (Chapters 10, 11, 12). Variation between indi-

vidual participants can be addressed during recruitment (sampling of par-

ticipants), by including participants that form as homogeneous a group as

possible while still representative of (and randomly selected from) some refer-

ence population (Lipsey, 1990). If we study language acquisition in bilingual

children, for example, then participants may be difficult to recruit. One

would be tempted to include all available children, irrespective of their par-

ents’ native languages. In fact, it might be wiser to select children by keeping

the parents’ languages fixed throughout the sample (e.g. all selected children

have a father with native language X and mother with native language Y).
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This may yield fewer children in the study, and it may reduce the generaliz-

ability of its results to a smaller population of interest, but the smaller and

more homogeneous sample is also likely to yield smaller variation between

observations, and hence a larger probability of a positive outcome.

In designing a between-subjects study, especially with few participants,

it may also be worthwile to match participants from the various groups on

relevant confounding variables (such as gender, socio-economic status, age),

rather than to rely on random selection to cancel out these confounds (Moore,

McCabe, & Craig, 2009, Ch.3). Specific suggestions on how to match and to

reduce variation between individual participants can be found in the afore-

mentioned chapters on comparing groups.

During the test itself, random variability in the measurements can be re-

duced by using a protocol for testing and quantifying observations (Lipsey,

1990), spelling out the procedures for the experimenters on how to instruct

participants, take the tests, make and record observations, transcribe and

quantify responses, etc. Such instructions will ultimately reduce standard

deviations, e.g., because all transcribers follow the same instructions in simi-

lar cases. See the Editors’ Introduction (Chapter 1) for further discussion of

test protocols and of methods to reduce variability.

The purpose of these different ways to reduce variability is to reduce the

random variability among observations. This increases the relative effect

size d, and this in turn provides some compensation against low numbers of

participants and/or items. If our alternate research idea is indeed true, the

ultimate aim of these efforts is to protect the power or sensitivity of our study

as much as possible. High power is desirable, after all, because we would like

to have a high chance of rejecting a false H0.
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6.4 How can I prove that there is no difference?

The logic of falsificationism, together with the asymmetry among H1 and H0,

brings problems if one attempts to verify a H0 which states that two con-

structs are identical (that there is no effect). The opposite hypothesis claims

that responses in the two conditions are different, and predicts that there

will be some difference between conditions. And indeed, such differences will

always be observed in real life, if only because of sampling variations, so that

a no-effect hypothesis can never be verified (it can only be falsified). Unfor-

tunately, many linguistic studies run into this problem of “proving the null

hypothesis”, because the aim of these studies is to investigate the similitudes

among languages and in language behavior under different circumstances or

by different groups of participants. Many of the studies discussed in Chapter

10, for example, aim to show that there is no fundamental difference between

the ways in which children and adults acquire grammar.

One sensible solution for this problem is to acknowledge that H1 and H0

are effectively reversed here, and so the conventional risks of Type I and

Type II errors should also be reversed. The H0 which we attempt to verify

should be rejected relatively easily, say α = .20, and the power in detecting

a small-size effect should be high, say β ≤ .05, to fend off the critique that

we have not attempted strong enough to reject H0.

In one of the fictitious example studies mentioned above (§2), vocabulary

sizes of 3-year-old and 5-year-old childen were compared, with H0 stating

that there is no difference between these two groups in vocabulary size. If

the statistical power were really high, say above 95% for differences of 2

scoring units or larger, and if H0 can nevertheless not be rejected, then this

might be interpreted as evidence that H0 is probably true. The chance of

this conclusion being incorrect (a Type II error) is then below 5%.
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The margin of error of this decision is equivalent to the effect size dis-

cussed in §5. In conventional null-hypothesis significance testing, the effect

size is like the weakest relevant effect (the weakest signal) that we want to

detect in the irrelevant background variability (the noise), in order to reject

H0. In the reverse procedure, the margin of error is like the highest noise

level that we want to allow in finding silence, in order to accept H0.

The reverse procedure sketched above may allow us to verify the null

hypothesis, but unfortunately it requires many participants. In this example

study, having a between-subjects design, the required number of participants

is at least n = 138 children (see §6.1; Gelman & Hill, 2007, Ch.20), or 69

children in each group. Thus we can only verify a null-effect hypothesis with

some confidence if we use large samples, or large margins of error, or both

(Cohen, 1988).

6.5 What to do about missing data?

Missing data are a cause for concern, for two reasons. First, the lower number

of observations reduces statistical power. Secondly, observations are often not

missing at random but according to some pattern, which introduces bias in

the remaining observations, and hence threatens validity. The longitudinal

example study comparing performance at ages 3 and 5 (§3) may be biased,

if the drop-out pattern is somehow related to the participants’ linguistic

performance. The pattern of missingness should be inspected as a regular

part of the data analysis, because it can reveal interesting properties of the

participants’ behavior as well as identify possible biases in the remaining

data.

Statistical analyses that are based on comparisons (e.g. t test, analysis of

variance) typically require complete cases, so the number of remaining com-
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plete cases (participants) for analysis may be quite low. (Cases are deleted

“listwise”, i.e. if just a single observation is missing.) In general, statisti-

cal analyses that are based on regression (e.g. linear or logistic regression,

multiple regression, mixed effects modeling, or factor analysis) are far more

robust against missing data. It may be worthwile therefore to analyze the

data by means of a regression-based technique. This can be achieved by

coding the independent variables as dummy predictors, and including these

in a multiple regression model (for analysis procedures, see e.g. Field, 2009,

Ch.7). Random factor(s) of participants (and items) may also be included

in such models. This yields a so-called mixed effects or multi-level model,

which is often more adequate than a conventional analysis of variance or t

test (for recent overviews, see e.g. Gelman & Hill, 2007; Quené & Van den

Bergh, 2008; Baayen, 2008; Baayen, Davidson, & Bates, 2008; Field, 2009,

Ch.19).

7 Dos and don’ts

• Do consider the design and analysis of a study together (see e.g. Levin,

1999; Kirk, 1995). You should really think about how the data will be

analyzed before the data are collected, i.e., while designing your study.

• Do consider the best practices and recommendations given by experi-

enced researchers (e.g. Cohen, 1990; Schmidt, 1996; Wilkinson & Task

Force on Statistical Inference (APA Board of Scientific Affairs), 1999;

Maxwell & Delaney, 2004; Rosenthal & Rosnow, 2008).

• Do reflect on the various possible threats to validity, and on how these

may be neutralized effectively.
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• Do learn about statistical analyses (and software) from many excellent

statistical textbooks, e.g. StatSoft, Inc. (2007); Moore et al. (2009),

Field (2009, for SPSS), Baayen (2008, for R) and Johnson (2008, for

R).

• Do conduct pilot work before conducting your main experiment, in or-

der to smooth out infelicitous choices in stimulus materials and test

procedures, to estimate standard deviations (needed for power analy-

sis), and to dry-run your data analysis.

• Do not include too many variables in your study, and do include more

participants (and/or items) (Cohen, 1990). This is a variant of the

well-known advice for travelers to pack half the clothes, and double the

money. Research progresses best in small steps, so that fewer things

can go wrong, and fewer or smaller confounds may be distorting the

hypothesized effect of interest.

• Do inspect whether there is some pattern in the missingness of obser-

vations, and whether you can (partly) account for this pattern. Learn

more about methods to adjust your analyses, or to impute the missing

data (e.g. Little & Rubin, 1987).

• Do not forget the hypotheses and ultimate objectives of your study

while analyzing your data. Often the binary decision whether or not

to reject the null hypothesis, at an arbitrary level of significance, does

insufficient justice to your findings (Schmidt, 1996).

• Do make it a habit to report effect sizes and/or confidence intervals of

your findings (following e.g. Publication Manual of the American Psy-

chological Association, 2001, p.26). These indicators convey the degree
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to which the null hypothesis is or is not true, whereas the above bi-

nary decision does not. Fellow researchers may use your reported effect

sizes, e.g. for properly designing their own studies, and for assessing

the magnitude of your hypothesized effect.

• Do use your own critical “informed judgment” (Cohen, 1990) as a be-

havioral linguistic researcher, during all stages of designing, conducting

and analyzing a study. Realize that the perfect study still has to be

conducted, even after you have finished yours. Your linguistic and

methodological expertise are essential to arrive at valid and interesting

conclusions about language acquisition.
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